
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Nonlinear Fractional-Order Estimator with Guaranteed Robustness and Stability for Lithium-Ion Batteries

This paper proposes a new estimator design algorithm for state-of-charge (SoC) indication of lithium-ion batteries. A fractional-order model-based nonlinear estimator is first framed including a Luenberger term and a sliding mode term. The estimator gains are designed by Lyapunov's direct method, providing a guarantee for stability and robustness of the error system under certain assumptions. This generic estimation algorithm is then applied to lithium-ion batteries. A fractional-order circuit model is adopted to predict battery dynamic behaviours. Assumptions based on which the estimation algorithm is developed are justified and remarked. Experiments corresponding to electric vehicle applications are conducted to parameterize the battery model and demonstrate the estimation performance. It shows that the proposed approach is able to estimate SoC with errors less than 0.03 in the presence of initial deviation and persistent noise. Furthermore, the benefits of using the proposed estimator relative to other estimators are calculated over different cycles and conditions.
- State Key Laboratory of Mechanical Transmission China (People's Republic of)
- University of Colorado Denver United States
- Chongqing University China (People's Republic of)
- State Key Laboratory of Mechanical Transmission China (People's Republic of)
- Beijing Institute of Technology China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).114 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
