Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Industrial Electronics
Article . 2021 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Circuit Modeling of the Mechanical-Motion Rectifier for Electrical Simulation of Ocean Wave Power Takeoff

Authors: Chien-An Chen; Xiaofan Li; Lei Zuo; Khai D. T. Ngo;

Circuit Modeling of the Mechanical-Motion Rectifier for Electrical Simulation of Ocean Wave Power Takeoff

Abstract

As is the case with several other mechanical power takeoffs (PTOs), the mechanical-motion-rectifier-based PTO consists of components, such as one-way clutches, gears, a ball screw, mechanical couplings, and a generator. Equivalent circuit models have been created in this article to describe the dry frictions, viscous damping, and mechanical compliances in these components, so the nonideal efficiency and nonlinear force of the PTO can be predicted in electrical simulations by integrating these subcircuit models. The circuit model is simplified, and its parameters are categorized as dc and ac unknowns. The dc and ac tests on the PTO are performed sequentially to extract two sets of parameters through linear regression or nonlinear curve fitting. Then, the model is validated through its prediction capability over 25 test conditions on input forces, output voltages, and efficiencies, with correlation coefficients of 0.9, 0.98, and 0.981, respectively.

Related Organizations
Powered by OpenAIRE graph
Found an issue? Give us feedback