
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Deep Deterministic Policy Gradient-DRL Enabled Multiphysics-Constrained Fast Charging of Lithium-Ion Battery
Deep Deterministic Policy Gradient-DRL Enabled Multiphysics-Constrained Fast Charging of Lithium-Ion Battery
Fast charging is an enabling technique for the large-scale penetration of electric vehicles. This paper proposes a knowledge-based, multi-physics-constrained fast charging strategy for lithium-ion battery (LIB), with a consciousness of the thermal safety and degradation. A universal algorithmic framework combining model-based state observer and a deep reinforcement learning (DRL)-based optimizer is proposed, for the first time, to provide a LIB fast charging solution. Within the DRL framework, a multi-objective optimization problem is formulated by penalizing the over-temperature and degradation. An improved environmental perceptive deep deterministic policy gradient (DDPG) algorithm with priority experience replay is exploited to trade-off smartly the charging rapidity and the compliance of physical constraints. The proposed DDPG-DRL strategy is compared experimentally with the rule-based strategies and the state-of-the-art model predictive controller to validate its superiority in terms of charging rapidity, enforcement of LIB thermal safety and life extension, as well as the computational tractability.
- Beijing Institute of Technology China (People's Republic of)
- Beijing Institute of Technology China (People's Republic of)
- University of Alberta Canada
- Nanyang Technological University Singapore
- Chalmers University of Technology Sweden
