Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Industrial Electronics
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Novel High-Order-Harmonic Winding Design Method for Vernier Reluctance Machine With DC Coils Across Two Stator Teeth

Authors: Xing Zhao; Sigao Wang; Shuangxia Niu; Weinong Fu; Xiaodong Zhang;

A Novel High-Order-Harmonic Winding Design Method for Vernier Reluctance Machine With DC Coils Across Two Stator Teeth

Abstract

Vernier reluctance machine with DC field coils in stator is a competitive rare-earth-free design for variable-speed industrial applications due to its robust structure and controllable excitation, while its torque density is relatively disadvantageous. To address this issue, this paper proposes a new armature winding design method for VRM with DC field coils across two stator teeth. The key is to break the traditional winding design principle based on the flux modulation effect of fundamental DC field harmonic, and instead, reconstruct a novel harmonic winding to enhance the utilization factor of the modulated high-order DC field harmonics. By this means, the torque density can be improved by 75.6% compared to the existing poor counterpart. In this paper, the machine structure and operation principle are introduced, with emphasis on the high-order DC field harmonics distribution rule and its influence on the armature winding design. By finite element design and optimization, a comparative study is performed to evaluate the machine performance using two different winding configurations with variable slot pole combinations. A prototype is fabricated and tested, and the results agree well with finite element analysis, which verifies the feasibility and advantages of the proposed winding design method.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Top 10%
Top 10%