
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Novel High-Order-Harmonic Winding Design Method for Vernier Reluctance Machine With DC Coils Across Two Stator Teeth

Vernier reluctance machine with DC field coils in stator is a competitive rare-earth-free design for variable-speed industrial applications due to its robust structure and controllable excitation, while its torque density is relatively disadvantageous. To address this issue, this paper proposes a new armature winding design method for VRM with DC field coils across two stator teeth. The key is to break the traditional winding design principle based on the flux modulation effect of fundamental DC field harmonic, and instead, reconstruct a novel harmonic winding to enhance the utilization factor of the modulated high-order DC field harmonics. By this means, the torque density can be improved by 75.6% compared to the existing poor counterpart. In this paper, the machine structure and operation principle are introduced, with emphasis on the high-order DC field harmonics distribution rule and its influence on the armature winding design. By finite element design and optimization, a comparative study is performed to evaluate the machine performance using two different winding configurations with variable slot pole combinations. A prototype is fabricated and tested, and the results agree well with finite element analysis, which verifies the feasibility and advantages of the proposed winding design method.
- Hong Kong Polytechnic University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).17 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
