
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Optimal Coordination of Electric Vehicles for Virtual Power Plants With Dynamic Communication Spectrum Allocation

handle: 10397/93393
This article proposes an optimal coordinated scheduling of electric vehicles (EVs) for a virtual power plant (VPP) considering communication reliability. Recent advancements on wireless technologies offer flexible communication solutions with wide coverage and low-cost deployment for smart grid. Nevertheless, the imperfect communication may deteriorate the monitoring and controlling performance of distributed energy resources. An interactive approach is presented for combined optimization of dynamic spectrum allocation and EV scheduling in the VPP to coordinate charging/discharging strategies of massive and dispersed EVs. In the proposed approach, a dynamic partitioning model of the multi-user multi-channel cognitive radio is used to cope with the vehicle-to-grid (V2G) communication issue due to variable EV parking behaviors, and a two-stage V2G dispatch scheme is proposed for the wind-solar-EV VPP to maximize its overall daily profit. Furthermore, the effects of packet loss probability on the VPP scheduling performance and battery degradation cost are thoroughly analyzed and investigated. Comparative studies have been implemented to demonstrate the superior performance of the proposed methodology under various imperfect communication conditions.
- Hunan Women'S University China (People's Republic of)
- Hong Kong Polytechnic University China (People's Republic of)
- Hong Kong Polytechnic University (香港理工大學) China (People's Republic of)
- Hong Kong Polytechnic University (香港理工大學) Hong Kong
- Hong Kong Polytechnic University (香港理工大學) China (People's Republic of)
330, Stochastic optimization, Wireless communication, Smart grid, Vehicle to grid, Virtual power plant
330, Stochastic optimization, Wireless communication, Smart grid, Vehicle to grid, Virtual power plant
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).50 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
