
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Temperature Profile Investigation of<tex>$hbox SnO_2$</tex>Sensors for CO Detection Enhancement

handle: 11365/33804 , 11365/21515
SnO/sub 2/ sensors are widely used for the detection of air contaminants such as CO. Nevertheless, their application encounters several problems, mainly the effect of interfering gases. The low selectivity is, in fact, a well-known problem of these sensors. Moreover, the high operating temperature of metal oxide sensors implies, in general, high power consumption. We present a study aimed at the selection of an appropriate measurement technique for detection of CO for indoor applications (lower threshold 100 ppm), in the presence of high concentrations of ethanol (up to 1000 ppm), by using only one sensor. Moreover, the paper aims at developing portable CO detectors that are very small, low power, and could be battery operated.
- University of Siegen Germany
- University of Siena Italy
- University of Siena Italy
Ethanol, Tin oxide sensors, Electronic nose, 620, Temperature modulation, tin oxide sensors; carbon monoxide; ethanol; temperature modulation, Carbon monoxide; Electronic nose; Ethanol; Temperature modulation; Tin oxide sensors, Carbon monoxide
Ethanol, Tin oxide sensors, Electronic nose, 620, Temperature modulation, tin oxide sensors; carbon monoxide; ethanol; temperature modulation, Carbon monoxide; Electronic nose; Ethanol; Temperature modulation; Tin oxide sensors, Carbon monoxide
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).26 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
