
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Distributed Detection and Control of Defective Thermoelectric Generation Modules Using Sensor Nodes

To maximize the energy productivity, effective in-field detection and real-time control of defective thermoelectric modules (TEMs) are critical in constituting a thermoelectric generation system (TEGS). In this paper, autonomous and distributed sensor nodes are designed to implement the wireless TEM management in terms of the measurement criteria of defective TEMs formulated for series-parallel-connected TEM arrays and the control scheme based on the TEM-oriented switches. The instrumentation of a TEGS prototype and the design of the embedded software associated with the sensor nodes are described, respectively. Defective and potentially healing conditions are dynamically monitored by a voltage sensor node and a temperature sensor node, both of which can judge the defective TEM and decide the related switching actions in a nearly independent way. The periodical wireless transmission from the nodes to a base station is no longer necessary, and with the minimized amount of communication signals, the battery lifetime of the distributed nodes can be significantly prolonged. In the experimental tests, the autonomous sensor nodes successfully disconnect and reconnect the defective TEMs, where a considerable power improvement is illustrated with the proposed measuring method and setup.
- Aalborg University Library (AUB) Denmark
- Aalborg University Denmark
- Aalborg University Denmark
- Aalborg University Library (AUB) Aalborg Universitet Research Portal Denmark
- Aalborg University Library (AUB) Denmark
sensor fusion, temperature, thermoelectric energy conversion, monitoring, voltage, measurement, Decision making
sensor fusion, temperature, thermoelectric energy conversion, monitoring, voltage, measurement, Decision making
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).4 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Average
