
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
MEC Intelligence Driven Electro-Mobility Management for Battery Switch Service

As a key enabler in the green transport system, the popularity of Electric Vehicles (EV) has attracted attention from academia and industrial communities. However, the driving range of EVs is inevitably affected by the insufficient battery volume, as such EV drivers may experience trip discomfort due to a long battery charging time (under traditional plug-in charging service). One feasible alternative to accelerate the service time to feed electricity is the battery switch technology, by cycling switchable (fully-recharged) batteries at Battery Switch Stations (BSSs) to replace the depleted batteries from incoming EVs. Along with recent advance of vehicle cooperation through emerging Information Communication Technology (ICT), in this paper we propose a Mobile Edge Computing (MEC) driven architecture to gear the intelligent battery switch service management for EVs. Here, the decision making on where to switch battery is operated by EVs in a distributed manner. Besides, the Vehicle-to-Vehicle (V2V) communication in line with public transportation bus system is applied to operate flexible information exchange between EVs and BSSs. Dedicated MEC functions are positioned for bus system to efficiently disseminate BSSs status and aggregate EVs’ reservations, concerning the massive signalling exchange cost. The Global Controller (GC) is positioned as cloud server to gather BSSs (service providers) status and EVs’ reservations (clients), and predict the service availability of BSS (e.g., whether/when a battery can be switched). We conduct performance evaluation to show the advantage of MEC system in terms of reduction of communication cost, and BSS service management scheme regarding reduction of service waiting time (e.g., how long to wait for battery switch) and increase of service satisfaction rate (e.g., how many batteries to switch for EVs).
- Beihang University China (People's Republic of)
- Beihua University China (People's Republic of)
- Sun Yat-sen University China (People's Republic of)
- Shenzhen University China (People's Republic of)
- Shenzhen University China (People's Republic of)
620, 004
620, 004
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).15 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
