Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Intelligent Transportation Systems
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Synergies Between Transportation Systems, Energy Hub and the Grid in Smart Cities

Authors: Sheikh, Morteza; Aghaei, Jamshid; Chabok, Hossein; Roustaei, Mahmoud; Niknam, Taher; Kavousi-Fard, Abdollah; Shafie-Khah, Miadreza; +2 Authors

Synergies Between Transportation Systems, Energy Hub and the Grid in Smart Cities

Abstract

The concept of smart cities has emerged as an ongoing research in recent years. In this case, there is a proven association between the smart cities and the smart devices, which have caused the power systems to become more flexible, controllable and detectable. Along with these promising results, many disputes have been generated over the cyber-attacks as unpredictable destructive threats, if not properly repelled, which could seriously endanger the power system. With this in mind, this paper explores a novel stochastic virtual assignment (SVA) method based on a directed acyclic graph (DAG) approach, where the essential data of the system sections are broadcasted decentralized through the data blocks, as a worthwhile step to deal with the cyber attacks' risk. To do so, an additional security layer is added to the data blocks aiming to enhance the security of the data against the long lasting data sampling by virtually assigning the hash addresses (HAs) to the data blocks, which are randomly changed based on a stochastic process. The basic network architecture is based on a Provchain structure as a new framework to constantly monitor data operation. Two pivotal strategies also represented to deal with the energy and time needed for the HAs generation process, which have improved the proposed method. In this paper, the proposed security framework is implemented in a smart city environment to provide a secure energy transaction platform. Results show the authenticity of this model and demonstrate the effectiveness of the SVA method in decreasing the successful probability of cyber threat, increasing the time needed for the cyber attacker to decrypt and manipulate the data block.

Country
Finland
Keywords

Smart city, ta222, virtual assignment approach, 005, energy transaction, fi=Sähkötekniikka|en=Electrical Engineering|, cyber-attacks, data security

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Average
Top 10%
bronze