

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Mixed-Integer Nonlinear Programming for Energy-Efficient Container Handling: Formulation and Customized Genetic Algorithm

Energy consumption is expected to be reduced while maintaining high productivity for container handling. This paper investigates a new energy-efficient scheduling problem of automated container terminals, in which quay cranes (QCs) and lift automated guided vehicles (AGVs) cooperate to handle inbound and outbound containers. In our scheduling problem, operation times and task sequences are both to be determined. The underlying optimization problem is mixed-integer nonlinear programming (MINLP). To deal with its computational intractability, a customized and efficient genetic algorithm (GA) is developed to solve the studied MINLP problem, and lexicographic and weighted-sum strategies are further considered. An e-constraint algorithm is also developed to analyze the Pareto frontiers. Comprehensive experiments are tested on a container handling benchmark system, and the results show the effectiveness of the proposed lexicographic GA, compared to results obtained with two commonly-used metaheuristics, a commercial MINLP solver, and two state-of-the-art methods.
- Zhengzhou University China (People's Republic of)
- Roma Tre University Italy
- Delft University of Technology Netherlands
- Roma Tre University Italy
- Zhengzhou University China (People's Republic of)
Optimization, 006, Genetic algorithms, Job shop scheduling, Containers, Energy consumption, Cranes, Task analysis, genetic algorithm, Automated container terminals, mixed-integer nonlinear programming, energy efficiency
Optimization, 006, Genetic algorithms, Job shop scheduling, Containers, Energy consumption, Cranes, Task analysis, genetic algorithm, Automated container terminals, mixed-integer nonlinear programming, energy efficiency
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 23 download downloads 57 - 23views57downloads
Data source Views Downloads TU Delft Repository 23 57


