Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Mobile Computing
Article . 2024 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

BEET: Blockchain Enabled Energy Trading for E-Mobility Oriented Electric Vehicles

Authors: null Bhawana; Sushil Kumar; Rajkumar Singh Rathore; Upasana Dohare; Omprakash Kaiwartya; Jaime Lloret; Neeraj Kumar;

BEET: Blockchain Enabled Energy Trading for E-Mobility Oriented Electric Vehicles

Abstract

[EN] Renewable Energy Sources (RESs) are gaining considerable attention to reduce human dependence on fossil fuels and minimize harmful gases in our surroundings. Existing literature on energy trading focused on providing renewable energy to smart homes, smart buildings, and smart offices to fulfill their daily energy demands obtained from RESs. Besides, Electric Vehicles (EVs) use either power grid energy or a battery exchange mechanism to recharge their low EV batteries. The continuous use of power grids to recharge low EV batteries causes a significant load on power grids. Due to this, power grids are inadequate to fulfill the ever-increasing demands of EVs in the future. In this context, we propose a Blockchain Enabled Energy Trading (BEET) framework oriented EV charging. A system architecture of the BEET framework is presented to describe the functioning of each layer and its associated entities. We formulate an optimization problem that maximizes the revenue in the energy trading process using a knapsack optimization. Smart contracts are designed on the consortium blockchain network to sell and buy renewable energy to aggregators and from producers, respectively. Moreover, an EV charging mechanism is designed to intelligently allocate renewable energy to consumers at a low price. A comparative analysis is performed with state-of-the-art works in terms of charging price, revenue, throughput, and latency. The results indicate that the BEET framework outperforms compared to state-of-the-art works to address the renewable energy demand problem to realize E-mobility. It is clarified that the data considered in the experimental analysis were obtained from statistical simulations in realistic E-Mobility environment settings.

No Statement Available

Country
Spain
Keywords

Optimization, Blockchain, INGENIERÍA TELEMÁTICA, RESs, Smart contract, EVs, Energy trading

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 41
    download downloads 1
  • 41
    views
    1
    downloads
    Data sourceViewsDownloads
    RiuNet411
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
5
Average
Average
Top 10%
41
1
Related to Research communities
Energy Research