
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Development and Experimental Validation of a Physics-Based PEM Fuel Cell Model for Cathode Humidity Control Design

In large polymer electrolyte membrane (PEM) fuel cell stacks, monitoring and control of the local changes in membrane humidity inside the cathode channel is critical. In this study, a control-oriented dynamic model capable of describing the spatial distribution of voltage and relative humidity (RH) in a large fuel cell stack is developed and experimentally validated. The model tracks energy and mass flow inside the cathode, anode, and coolant channels, as well as the fuel cell stack body. Validation tests show that the model agrees well with the experimental data. The new modeling framework developed in this study can be used to predict the localized effects of humidity on the performance of a fuel cell stack. Also, given its accurate prediction of RH in the stack, this model can be used as an observer to predict local humidity variations that are, otherwise, not available. This capability would allow PEM fuel cells to avoid membrane damage due to low operating humidities as well as efficiency losses due to catalyst layer flooding.
- The University of Texas at Austin United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).22 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
