
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Health Prognosis for Electric Vehicle Battery Packs: A Data-Driven Approach

Accurate, reliable, and robust prognosis of the state of health (SOH) and remaining useful life (RUL) plays a significant role in battery pack management for electric vehicles. However, there still exist challenges in computational cost, storage requirement, health indicators extraction, and algorithm design. This paper proposes a novel dual Gaussian process regression model for the SOH and RUL prognosis of battery packs. The multi-stage constant current charging method is used for aging tests. Health indicators are extracted from partial charging curves, in which capacity loss, resistance increase, and inconsistency variation are examined. A dual Gaussian process regression model is designed to predict SOH over the entire cycle life and RUL near the end of life. Experimental results show that the predictions of SOH and RUL are accurate, reliable, and robust. The maximum absolute errors and root mean square errors of SOH predictions are less than 1.3% and 0.5%, respectively, and the maximum absolute errors and root mean square errors of RUL predictions are 2 cycles and 1 cycle, respectively. The computation time for the entire training and testing process is less than 5 seconds. This article shows the prospect of health prognosis using multiple health indicators in automotive applications.
- Chongqing University China (People's Republic of)
- Aalborg University Denmark
- University of Ontario Institute of Technology Canada
- University of Ontario Institute of Technology Canada
- Chongqing University China (People's Republic of)
state of health, remaining useful life, Battery pack, multiple health indicators, Gaussian process regression
state of health, remaining useful life, Battery pack, multiple health indicators, Gaussian process regression
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).131 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
