
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
Artificial Neural Networks for Control of a Grid-Connected Rectifier/Inverter Under Disturbance, Dynamic and Power Converter Switching Conditions
pmid: 24807951
Three-phase grid-connected converters are widely used in renewable and electric power system applications. Traditionally, grid-connected converters are controlled with standard decoupled d-q vector control mechanisms. However, recent studies indicate that such mechanisms show limitations in their applicability to dynamic systems. This paper investigates how to mitigate such restrictions using a neural network to control a grid-connected rectifier/inverter. The neural network implements a dynamic programming algorithm and is trained by using back-propagation through time. To enhance performance and stability under disturbance, additional strategies are adopted, including the use of integrals of error signals to the network inputs and the introduction of grid disturbance voltage to the outputs of a well-trained network. The performance of the neural-network controller is studied under typical vector control conditions and compared against conventional vector control methods, which demonstrates that the neural vector control strategy proposed in this paper is effective. Even in dynamic and power converter switching environments, the neural vector controller shows strong ability to trace rapidly changing reference commands, tolerate system disturbances, and satisfy control requirements for a faulted power system.
- Alabama Agricultural and Mechanical University United States
- University of Essex United Kingdom
- Missouri University of Science and Technology United States
- City, University of London United Kingdom
- City, University of London United Kingdom
QA75, Models, Statistical, 330, QA75 Electronic computers. Computer science, TK, Signal Processing, Computer-Assisted, Equipment Design, 620, Feedback, 629, Equipment Failure Analysis, Electric Power Supplies, Electricity, Energy Transfer, Computer Simulation, Neural Networks, Computer, Algorithms, Power Plants
QA75, Models, Statistical, 330, QA75 Electronic computers. Computer science, TK, Signal Processing, Computer-Assisted, Equipment Design, 620, Feedback, 629, Equipment Failure Analysis, Electric Power Supplies, Electricity, Energy Transfer, Computer Simulation, Neural Networks, Computer, Algorithms, Power Plants
