
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
An Adaptive Deep Belief Network With Sparse Restricted Boltzmann Machines

pmid: 31880561
Deep belief network (DBN) is an efficient learning model for unknown data representation, especially nonlinear systems. However, it is extremely hard to design a satisfactory DBN with a robust structure because of traditional dense representation. In addition, backpropagation algorithm-based fine-tuning tends to yield poor performance since its ease of being trapped into local optima. In this article, we propose a novel DBN model based on adaptive sparse restricted Boltzmann machines (AS-RBM) and partial least square (PLS) regression fine-tuning, abbreviated as ARP-DBN, to obtain a more robust and accurate model than the existing ones. First, the adaptive learning step size is designed to accelerate an RBM training process, and two regularization terms are introduced into such a process to realize sparse representation. Second, initial weight derived from AS-RBM is further optimized via layer-by-layer PLS modeling starting from the output layer to input one. Third, we present the convergence and stability analysis of the proposed method. Finally, our approach is tested on Mackey-Glass time-series prediction, 2-D function approximation, and unknown system identification. Simulation results demonstrate that it has higher learning accuracy and faster learning speed. It can be used to build a more robust model than the existing ones.
- Tsinghua University China (People's Republic of)
- Beijing University of Technology China (People's Republic of)
- Beijing University of Technology China (People's Republic of)
- New Jersey Institute of Technology United States
- New Jersey Institute of Technology United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).50 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
