
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Cognitive Social IoT Approach for Smart Energy Management in a Real Environment

handle: 11584/359961
Energy usage inside buildings is a critical problem, especially considering high loads such as Heating, Ventilation and Air Conditioning (HVAC) systems: around 50% of the buildings’ energy demand resides in HVAC usage which causes a significant waste of energy resources due to improper uses. Usage awareness and efficient management have the potential to reduce related costs. However, strict saving policies may contrast with users’ comfort. In this sense, this paper proposes a multi-user multi-room smart energy management approach where a trade-off between the energy cost and the users’ thermal comfort is achieved. The proposed user-centric approach takes advantage of the novel paradigm of the Social Internet of Things to leverage a social consciousness and allow automated interactions between objects. Accordingly, the system automatically obtains the thermal profiles of both rooms and users. All these profiles are continuously updated based on the system experience and are then analysed through an optimization model to drive the selection of the most appropriate working times for HVACs. Experimental results in a real environment demonstrated the cognitive behaviour of the system which can adapt to users’ needs and ensure an acceptable comfort level while at the same time reducing energy costs compared to traditional usage.
Energy consumption, Optimization, Genetic Algorithm, Smart buildings, Energy Management, Real Environment, Social IoT, Energy management, Buildings, HVAC, User Comfort, Costs
Energy consumption, Optimization, Genetic Algorithm, Smart buildings, Energy Management, Real Environment, Social IoT, Energy management, Buildings, HVAC, User Comfort, Costs
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
