Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Electronics
Article . 2016 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
http://dx.doi.org/10.1109/TPEL...
Article . Peer-reviewed
Data sources: SNSF P3 Database
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Circulating Current Suppression of the Modular Multilevel Converter in a Double-Frequency Rotating Reference Frame

Authors: Bahrani Behrooz; Debnath Suman; Saeedifard Maryam;

Circulating Current Suppression of the Modular Multilevel Converter in a Double-Frequency Rotating Reference Frame

Abstract

The modular multilevel converter (MMC) has attracted significant interest for medium-/high-power energy conversion applications due to its modularity, scalability, and excellent harmonic performance. One of the technical challenges associated with the operation of the MMC is the circulation of double-frequency harmonic currents within its phase legs. This paper proposes a circulating current control strategy in a double-frequency rotating reference frame, which, contrary to the existing solutions that are based on approximate/inaccurate models, relies on an experimentally identified nonparametric model of circulating currents to determine the coefficients of the controller. Minimizing the squared second norm of the error between the open-loop transfer function of the system and a desired one, the coefficients of the controller are determined. To guarantee the stability of the closed-loop system, the minimization problem is subjected to a few constraints. The validity and effectiveness of the proposed control strategy is confirmed, and its dynamic performance is compared with that of an existing solution by experimental results.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    111
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
111
Top 1%
Top 10%
Top 1%