Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CONICET Digitalarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
CONICET Digital
Article . 2016
License: CC BY NC SA
Data sources: CONICET Digital
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Electronics
Article . 2016 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

High-Efficiency DAB Converter Using Switching Sequences and Burst Mode

Authors: Oggier, German Gustavo; Ordonez, Martin;

High-Efficiency DAB Converter Using Switching Sequences and Burst Mode

Abstract

Dual active bridge converters enable bidirectional power flow in buck and boost operating modes. This paper presents an advanced switching sequence and burst-mode strategy to balance conduction, switching, and magnetic losses under light, medium, and heavy loading conditions, leading to improved operating efficiency. The implementation of the switching sequence employs the natural state-plane trajectories of the converter and contributes to higher efficiency and the ability to perform burst mode. The proposed switching sequences improve the overall efficiency of the converter by enabling soft switching and adjusting the frequency to match the minimum RMS transformer current in the full operating range. Furthermore, it incorporates a fully controlled burst-mode switching sequence for light loading conditions to further extend the efficiency gains. As a result, maximum efficiency is obtained by taking advantage of all the possible switching structures of the converter. The analysis provides insight into the natural trajectories of the converter, which produce soft-switching transitions and enable the converter structures to achieve the target operating point directly. Simulation and experimental results are presented to validate the benefits of the switching sequence and illustrate the burst-mode operation.

Country
Argentina
Keywords

BOUNDARY CONTROL, https://purl.org/becyt/ford/2.2, DUAL ACTIVE BRIDGE (DAB) CONVERTER, https://purl.org/becyt/ford/2, DC-DC ISOLATED CONVERTERS

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    102
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
102
Top 1%
Top 1%
Top 1%