
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Novel State-of-Charge Estimation Method of Lithium-Ion Batteries Combining the Grey Model and Genetic Algorithms

handle: 2381/40948
In order to guarantee safe and reliable operation of electric vehicle batteries and to optimize their energy and capacity utilization, it is indispensable to estimate their state-of-charge (SoC). This study aimed to develop a novel estimation approach based on the grey model (GM) and genetic algorithms without the need of a high-fidelity battery model demanding high computation power. A SoC analytical model was established using the grey system theory based on a limited amount of incomplete data in contrast with conventional methods. The model was further improved by applying a sliding window mechanism to adjust the model parameters according to the evolving operating status and conditions. In addition, the genetic algorithms were introduced to identify the optimal adjustment coefficient λ in a traditional grey model (1, 1) model to further improve the source estimation accuracy. For experimental verification, two types of lithium-ion batteries were used as the device-under-test that underwent typical passenger car driving cycles. The proposed SoC estimation method were verified under diverse battery discharging conditions and it demonstrated superior accuracy and repeatability compared to the benchmarking GM method.
- Guangxi University China (People's Republic of)
- Guangxi University China (People's Republic of)
- University of Leicester United Kingdom
- Guangxi University China (People's Republic of)
grey model, 600, lithium-ion battery, genetic algorithms, Electric vehicles (EVs), state-of-charge
grey model, 600, lithium-ion battery, genetic algorithms, Electric vehicles (EVs), state-of-charge
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).63 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
