
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
State-of-Health Estimation Based on Differential Temperature for Lithium Ion Batteries

handle: 1959.3/456389
State-of-health (SOH) estimation is necessary for lithium ion batteries due to ineluctable battery ageing. Existing SOH estimation methods mainly focus on voltage characteristics without considering temperature variation in the process of health degradation. In this article, we propose a novel SOH estimation method based on battery surface temperature. The differential temperature curves during constant charging are analyzed and found to be strongly related to SOH. Part of the differential temperature curves in a voltage range is adopted to establish a relationship with SOH using support vector regression. The influence of battery discrepancy, voltage range, and sampling step are systematically discussed and the best combination of voltage range and sampling step is determined using leave-one-out validation. The proposed method is then validated and compared with an incremental capacity analysis (ICA)-based SOH estimation method using the Oxford and NASA datasets, which were collected from different cells under different conditions, respectively. The results show that the proposed method is capable of estimating SOH with the root-mean-square error less than 3.62% and 2.49%, respectively. In addition, the proposed method can improve the overall SOH estimation accuracy and robustness by combining with the ICA-based method with little computational burden.
- Swinburne University of Technology Australia
- Beijing Institute of Technology China (People's Republic of)
- Beijing Institute of Technology China (People's Republic of)
- Swinburne University of Technology Australia
310
310
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).195 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 0.1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 0.1%
