Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Delivery
Article . 2009 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://doi.org/10.1109/pesgm....
Conference object . 2014 . Peer-reviewed
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Empirical-Mode Decomposition With Hilbert Transform for Power-Quality Assessment

Authors: Sukumar Mishra; Bhim Singh; Sudheesh K. Shukla;

Empirical-Mode Decomposition With Hilbert Transform for Power-Quality Assessment

Abstract

The aim of this paper is to develop a method based on combination of Empirical Mode Decomposition (EMD) and Hilbert Transform for assessment of power quality events. A distorted waveform can be conceived as superimposition of various oscillating modes and EMD is used to separate out these intrinsic modes known as intrinsic mode functions (IMF). Hilbert transform is applied to first three IMF to obtain instantaneous amplitude and phase which are then used for constructing feature vector. The work evaluates the detection capability of the methodology and a comparison with S-Transform is made to show the superiority of the technique in detecting the PQ disturbance like voltage spike and notch. A Probabilistic Neural Network is used as a mapping function for identifying the various disturbance classes. Results show a better classification accuracy of the methodology.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    164
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
164
Top 1%
Top 1%
Top 10%