
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Identification of Critical Spans for Monitoring Systems in Dynamic Thermal Rating

Dynamic thermal rating (DTR) has been seen as an important tool for planning and operation of power systems, and recently, for smart-grid applications. To implement an effective DTR system, it is necessary to install monitoring stations along the studied lines, with a tradeoff between accurate estimations and equipment investments. In this paper, a novel heuristic is developed for identifying the number and locations of critical monitoring spans for the implementation of DTR. The heuristic is based on the use of historical-simulated weather data, obtained from a Mesoscale Weather Model, and the statistical analysis of the thermal capacities computed in each span along the line. The heuristic is applied to a line that is 325 km long in North Chile. Optimal monitoring sets, including the number and location of required monitoring stations, are determined for different confidence levels in all line segments. The results are compared to an equidistant monitoring strategy. The proposed heuristic shows robustness since it outperforms the equidistant monitoring strategy in all of the analyzed cases, especially for the longer line segments, which are subject to more complex weather patterns.
- University of Chile Chile
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).81 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 1% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
