Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Archivio della ricer...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Transactions on Power Delivery
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

On the Role of Shield Wires in Mitigating Lightning-Induced Overvoltages in Overhead Lines - Part I: A Critical Review and a New Analysis

Authors: Amedeo Andreotti; Rodolfo Araneo; J. Brandao Faria; Jinliang He; Emanuel Petrache; Antonio Pierno; Erika Stracqualursi;

On the Role of Shield Wires in Mitigating Lightning-Induced Overvoltages in Overhead Lines - Part I: A Critical Review and a New Analysis

Abstract

The ability of shield wires installed in overhead lines to mitigate lightning-induced overvoltages has been extensively investigated. Unfortunately, these studies came to different results, sometimes contradicting each other: some authors found that shield wires produce a significant overvoltage reduction, while others found the reduction negligible; conflicting results also pertain to the role played by the various parameters involved, such as the relative height of the shield wires compared to the phase conductors. This paper aims to clarify this topic. The paper is organized in two parts: Part I, which starts from the analysis of the theory behind the mitigation effect, is devoted to establishing a more solid base to the topic. Two fundamental improvements are proposed: the first one is the distinction between internal and external of the parameters involved: current literature makes an indiscriminate grouping of all of them; the second one is concerned with the point along the line where the mitigation effect needs to be assessed. Thanks to this new approach, we show that this effect can be precisely quantified. The analysis in this Part I is limited to the basic case of a single grounding point of the shield wire, which represents an unrealistic case. Part II is devoted to completing the study, by applying the proposed approach to more realistic and practical cases.

Country
Italy
Keywords

conductors; grounding; lightning; resistance; shield factor; shield wires; surge protection; wires

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    9
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
9
Top 10%
Average
Top 10%
Green
hybrid