Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao The University of Ma...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Delivery
Article . 2023 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Advancing OHL Rating Calculations: Modeling Mixed-Convective Cooling and Conductor Geometry

Authors: Konstantinos Kopsidas; Shahnurriman Abdul Rahman; Mohammed Abdulaziz AlAqil; Stefano Rolfo;

Advancing OHL Rating Calculations: Modeling Mixed-Convective Cooling and Conductor Geometry

Abstract

The existing standard current-temperature calculations for overhead line (OHL) conductors have been adequate for conventional conductors and their operating temperatures. However, these calculations make assumptions and include simplifications about conductor geometry and aero-thermal-dynamics, introducing an error in the High-Temperature Low-Sag conductors operating temperatures. To quantify the error introduced by the shape of strands, the paper employs a Multi-Physics Finite Element Modeling approach that calculates the conjugate heat transfer for trapezoidal stranded OHL conductors. Furthermore, it proposes corrective equations to improve the accuracy of existing methods. The equations incorporate a new Nusselt number correlation for mixed convection and capture the surface area ignored by current calculations. The outer conductor geometry assumptions and the combined natural and forced convective cooling omission in the IEEE and CIGRE methods introduce an error at low (below 0.12 m/s) cross-flow wind speeds suggesting an underestimation of conductor temperature by up to 4%. In medium wind speeds, typically at 0.5 m/s - 0.61 m/s, the standard methods overestimate the conductor temperature limiting its current-carrying capability. A 5% uprating for existing OHLs is potentially feasible, particularly for the trapezoidal stranded conductors, when removing the assumptions made in existing methods.

Country
United Kingdom
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green