Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Archivio della ricer...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Delivery
Article . 2023 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Design of a Wireless Sensor Node for Overhead High Voltage Transmission Power Lines

Authors: Massimo Ferracini; Mario Pagano; Carlo Petrarca; Eric Polo; Stefano Saggini; Giulia Segatti; Mario Ursino;

Design of a Wireless Sensor Node for Overhead High Voltage Transmission Power Lines

Abstract

High Voltage (HV) overhead power lines are systems of interconnected elements that deliver massive amounts of electrical energy over long distances. Electrical conductors, used as energy carriers, are designed according voltage, current, and temperature rated value. Monitoring the power line's state variables is emerging as a crucial topic aiming at both determining the optimal real-time capability and defining a suitable model for Health Index assessment. A Wireless Sensor Network (WSN), consisting of many distributed sensor nodes that communicate with each other, can be a suitable tool to improve line ampacity by maintaining the operating variables in respect of their rated values. This paper investigates the design of an Energy Management System (EMS) for a wireless sensor for HV power line application and proposes a maximum power point tracker (MPPT). The behavior of the MPPT is discussed in terms of electromagnetic field laws and properties of magnetic materials. Ordinary and extraordinary operating conditions are investigated. The theoretical results are validated through a series of experimental tests. A prototype has been realized and tested for real operating currents. The tests are also used to verify the sensor's resilience in the presence of harsh fault conditions.

Country
Italy
Keywords

energy harvesting, Monitoring, Energy harvesting, energy management system, fault condition, Wireless communication, Wireless sensor networks, Conductors, Power transmission lines, wireless sensor node, Conductors; Energy harvesting; energy harvesting; energy management system; fault condition; Monitoring; Overhead power lines; Power transmission lines; resilience; Temperature sensors; Wireless communication; Wireless sensor networks; wireless sensor node, Temperature sensors, Overhead power lines, resilience

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    5
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
5
Top 10%
Average
Top 10%