Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Systems
Article . 2011 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
ZENODO
Article . 2011
Data sources: ZENODO
ZENODO
Article . 2011
Data sources: ZENODO
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

PLC-Based Model of Reactive Power Flow in Steam Power Plant for Pre-Commissioning Validation Testing of Coordinated Q-V Controller

Authors: Dragosavac, Jasna; Janda, Žarko; Milanović, Jovica V.;

PLC-Based Model of Reactive Power Flow in Steam Power Plant for Pre-Commissioning Validation Testing of Coordinated Q-V Controller

Abstract

The paper presents the digital realization of a model of reactive power flow (QFM) in a steam power plant using a programmable logic controller (PLC). The steam power plant (SPP) model is developed for pre-commissioning validation testing of the coordinated reactive power-terminal voltage (Q-V) control system. The SPP QFM includes a model for a synchronous generator, an excitation system, a step-up transformer, and the generator's droop characteristic modeled through the automatic voltage regulator (AVR). A QFM synthesis is based on a series of experiments performed on site. The parameters of the generator and AVR are estimated from recorded generator voltage and current time responses to a step change in voltage reference of the AVR. To get a complete QFM, transformers and network reactances are also included. In order to calculate reactive power (Q) flows more accurately, the generator Q output is adjusted by taking into account its real power output. Standard PLC hardware, as industrial grade equipment appropriate for on site testing, is used for practical QFM implementation after discretization of the continuous mathematical model. The developed QFM response is verified through a series of experiments performed in the laboratory.

Country
United Kingdom
Related Organizations
Keywords

Reactive power, Programmable logic devices, Power system reliability, Steam power plant, Coordinated Q-V control, steam power plant, Generators, Discrete reactive power flow model, Voltage control, discrete reactive power flow model, Power generation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 6
    download downloads 1
  • 6
    views
    1
    downloads
    Data sourceViewsDownloads
    ZENODO61
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
8
Average
Top 10%
Top 10%
6
1