

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
PLC-Based Model of Reactive Power Flow in Steam Power Plant for Pre-Commissioning Validation Testing of Coordinated Q-V Controller

The paper presents the digital realization of a model of reactive power flow (QFM) in a steam power plant using a programmable logic controller (PLC). The steam power plant (SPP) model is developed for pre-commissioning validation testing of the coordinated reactive power-terminal voltage (Q-V) control system. The SPP QFM includes a model for a synchronous generator, an excitation system, a step-up transformer, and the generator's droop characteristic modeled through the automatic voltage regulator (AVR). A QFM synthesis is based on a series of experiments performed on site. The parameters of the generator and AVR are estimated from recorded generator voltage and current time responses to a step change in voltage reference of the AVR. To get a complete QFM, transformers and network reactances are also included. In order to calculate reactive power (Q) flows more accurately, the generator Q output is adjusted by taking into account its real power output. Standard PLC hardware, as industrial grade equipment appropriate for on site testing, is used for practical QFM implementation after discretization of the continuous mathematical model. The developed QFM response is verified through a series of experiments performed in the laboratory.
- University of Salford United Kingdom
Reactive power, Programmable logic devices, Power system reliability, Steam power plant, Coordinated Q-V control, steam power plant, Generators, Discrete reactive power flow model, Voltage control, discrete reactive power flow model, Power generation
Reactive power, Programmable logic devices, Power system reliability, Steam power plant, Coordinated Q-V control, steam power plant, Generators, Discrete reactive power flow model, Voltage control, discrete reactive power flow model, Power generation
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).8 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Average influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 6 download downloads 1 - 6views1downloads
Data source Views Downloads ZENODO 6 1


