Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Systems
Article . 2013 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Coordinated Control of a DG and Voltage Control Devices Using a Dynamic Programming Algorithm

Authors: Kim, Young-Jin; Ahn, Seon-Ju; Hwang, Pyeong-Ik; Pyo, Gi-Chan; Moon, Seung-Il;

Coordinated Control of a DG and Voltage Control Devices Using a Dynamic Programming Algorithm

Abstract

This paper presents a new control method, in which a distributed generator (DG) actively participates in steady-state voltage control, together with an under-load tap changer (ULTC) and shunt capacitors (Sh.Cs). In the conventional DG control method, the integration of DGs into a distribution power system increases the number of switching operations of the ULTC and the Sh.Cs. To solve this problem, this paper proposes that the DG output voltage be dispatched cooperatively with the operation of the ULTC and the Sh.Cs, based on load forecasts for one day in advance. The objective of the proposed method is to decrease the number of switching device operations, as well as to reduce the power loss in the distribution lines, while maintaining the grid voltage within the allowed range. The proposed method is designed and implemented with Matlab, using two different dynamic programming algorithms for a dispatchable and a nondispatchable DG, respectively. Simulation studies demonstrate that the objective can be achieved under various grid conditions, determined by factors such as the DG output power characteristics, the location of the DG-connected bus on the feeder, and the load profile of the feeder containing the DG.

Country
Korea (Republic of)
Keywords

DG output voltage, dynamic programming, load forecasts, 620, power loss, CAPACITORS, DISPATCH, Dispatchable and nondispatchable distributed generator (DG), WIND-TURBINE, ULTC, OPERATION, REACTIVE POWER-CONTROL, number of switching operations of under-load tap changer (ULTC) and shunt capacitors (Sh.Cs)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    103
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
103
Top 10%
Top 1%
Top 1%