Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Systems
Article . 2013 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
https://doi.org/10.1109/pesmg....
Conference object . 2013 . Peer-reviewed
Data sources: Crossref
versions View all 15 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Tight and Compact MILP Formulation of Start-Up and Shut-Down Ramping in Unit Commitment

Authors: Morales España, German Andres; Latorre Canteli, Jesús María; Ramos Galán, Andrés;

Tight and Compact MILP Formulation of Start-Up and Shut-Down Ramping in Unit Commitment

Abstract

The Start-Up (SU) & Shut-Down (SD) ramps of thermal units must be considered in Unit Commitment (UC) formulations to accurately represent the unit s power production. However, these ramps are usually ignored because they will considerably increase the computational burden of the UC problem. This paper presents a Mixed-Integer Linear Programming (MILP) formulation of SU & SD power trajectories of thermal units where the computational burden is considerably decreased in comparison to formulations commonly found in the literature. This is because the proposed formulation is i) tighter, i.e. the relaxed solution is nearer to the optimal integer solution; and ii) more compact, i.e. it needs fewer constraints, variables and nonzero elements in the constraint matrix. The proposed formulation is illustrated employing the self-UC problem faced by a thermal unit. Results show that not considering SU & SD ramps changes the commitment decisions causing a negative economic impact. We provide computational results comparing the proposed formulation with others found in the literature. The computation time was dramatically reduced as a natural consequence of the considerably tighter and more compact formulation. info:eu-repo/semantics/draft

Country
Spain
Keywords

330, 620, Instituto de Investigación Tecnológica (IIT)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    178
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
178
Top 1%
Top 1%
Top 1%