Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Offering Strategy of Wind-Power Producer: A Multi-Stage Risk-Constrained Approach

Authors: Luis Baringo; Antonio J. Conejo;

Offering Strategy of Wind-Power Producer: A Multi-Stage Risk-Constrained Approach

Abstract

Given the significant amount of installed generation-capacity based on wind power, and also due to current economic downturn, the subsidies and incentives that have been widely used by wind-power producers to recover their investment costs have decreased and are even expected to disappear in the near future. In these conditions, wind-power producers need to develop offering strategies to make their investments profitable counting solely on the market. This paper proposes a multi-stage risk-constrained stochastic complementarity model to derive the optimal offering strategy of a wind-power producer that participates in both the day-ahead and the balancing markets. Uncertainties concerning wind-power productions, market prices, demands' bids, and rivals' offers are efficiently modeled using a set of scenarios. The conditional-value-at-risk metric is used to model the profit risk associated with the offering decisions. The proposed model is recast as a tractable mixed-integer linear programming program solvable using available branch-and-cut algorithms. Results of a case study are reported and discussed to show the effectiveness and applicability of the proposed approach.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    122
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
122
Top 1%
Top 10%
Top 1%