Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Systems
Article . 2016 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Experimental Study of Grid Frequency Regulation Ancillary Service of a Variable Speed Heat Pump

Authors: Kim, YJ; Fuentes, E; Norford, LK;

Experimental Study of Grid Frequency Regulation Ancillary Service of a Variable Speed Heat Pump

Abstract

This paper describes an analysis of a variable speed heat pump (VSHP), which responds to direct load control (DLC) signals to provide grid frequency regulation (GFR) ancillary service, while ensuring the comfort of building occupants. A data-driven dynamic model of the VSHP is developed through real-time experimental studies with a time horizon ranging from seconds to hours. The model is simple, yet still sufficiently comprehensive to analyze the operational characteristics of the VSHP. The DLC scheme is then experimentally applied to the VSHP to evaluate its demand response (DR) capability. Two control methods are considered for a practical implementation of the DLC-enabled VSHP and a further improvement of the DR capability, respectively. Additionally, a small-signal analysis is carried out using the aggregated dynamic response of a number of DLC-enabled VSHPs to analyze their contribution to GFR in an isolated power grid. For experimental case studies, a laboratory-scale microgrid is then implemented with generator and load emulators. We show that the DLC-enabled VSHP can effectively reduce grid frequency deviations and required reserve capacities of generators.

Country
Korea (Republic of)
Keywords

DEMAND, small-signal analysis, variable speed heat pump (VSHP), 621, laboratory-scale microgrid, LOAD CONTROL, direct load control (DLC), grid frequency regulation (GFR) ancillary service, VEHICLES, MANAGEMENT, SYSTEM, Comfort of building occupants

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    105
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
105
Top 1%
Top 10%
Top 1%