
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Measurement-Based Real-Time Voltage Stability Monitoring for Load Areas

Measurement-Based Real-Time Voltage Stability Monitoring for Load Areas
This paper proposes a measurement-based voltage stability monitoring method for a load area fed by N tie lines. Compared to a traditional Thevenin equivalent based method, the new method adopts an N $+1$ buses equivalent system so as to model and monitor individual tie lines. For each tie line, the method solves the power transfer limit against voltage instability analytically as a function of all parameters of that equivalent, which are online identified from real-time synchronized measurements on boundary buses of the load area. Thus, this new method can directly calculate the real-time power transfer limit on each tie line. The method is first compared with a Thevenin equivalent based method using a 4-bus test system and then demonstrated by case studies on the Northeast Power Coordinating Council (NPCC) 48-machine, 140-bus power system.
- University of Tennessee at Knoxville United States
- Electric Power Research Institute United States
- Electric Power Research Institute United States
- Tennessee State University United States
- Tennessee State University United States
5 Research products, page 1 of 1
- 2017IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
- 2019IsAmongTopNSimilarDocuments
- 2017IsAmongTopNSimilarDocuments
- 2018IsAmongTopNSimilarDocuments
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).76 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
