Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Systems
Article . 2016 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

A Linear Programming Approach to Expansion Co-Planning in Gas and Electricity Markets

Authors: Qiu, Jing; Yang, Hongming; Dong, Zhao Yang; Zhao, Jun Hua; Meng, Ke; Luo, Feng Ji; Wong, Kit Po;

A Linear Programming Approach to Expansion Co-Planning in Gas and Electricity Markets

Abstract

In a carbon-constrained world, the continuing and rapid growth of gas-fired power generation (GPG) will lead to the increasing demand for natural gas. The reliable and affordable gas supply hence becomes an important factor to consider in power system planning. Meanwhile, the installation of GPG units should take into account not only the fuel supply constraints but also the capability of sending out the generated power. In this paper, a novel expansion co-planning (ECP) model is proposed, aiming to minimize the overall capital and operational costs for the coupled gas and power systems. Moreover, linear formulations are introduced to deal with the nonlinear nature of the objective functions and constraints. Furthermore, the physical and economic interactions between the two systems are simulated by an iterative process. The proposed linear co-planning approach is tested on a simple six-bus power system with a seven-node gas system and a modified IEEE 118-bus system with a 14-node gas system. Numerical results have demonstrated that our co-planning approach can allow systematic investigations on supporting cost-effective operating and planning decisions for power systems.

Country
Australia
Keywords

co-optimization, linear programming, 006, natural gas systems, expansion co-planning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
99
Top 1%
Top 10%
Top 1%