Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Systems
Article . 2017 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Linear Decision Rules for Hydropower Scheduling Under Uncertainty

Authors: Ruud Egging; Stein-Erik Fleten; Ida Gronvik; Ajla Hadziomerovic; Nina Ingvoldstad;

Linear Decision Rules for Hydropower Scheduling Under Uncertainty

Abstract

We investigate the hydropower scheduling problem, in which a price-taking producer determines a reservoir management strategy that maximises the present value of revenues from selling the produced electricity in a well-functioning market. Uncertainty is present both in market prices and in reservoir inflows. To solve the problem, we apply linear decision rules, which is an approximation method for solving multistage stochastic linear programming problems. Traditional methods for solving these types of problems suffer from computational efforts that grow exponentially with the number of stages and state variables. By restricting the decision variables to be affine functions of the realisations of the uncertain parameters, the original intractable problem is transformed into a problem with short computational time. The aim is to investigate feasibility of the framework. The approach is demonstrated on four Norwegian hydropower plants using recent inflow and price data over a ten year time horizon. We obtain flexible reservoir management strategies, providing feasible solutions where a deterministic approach fails, and otherwise improving expected profits by up to 4.5% compared to a deterministic approach. Solutions times are in the order of minutes.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    16
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
16
Top 10%
Top 10%
Top 10%