Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Systems
Article . 2017 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Voltage Control Strategies for Solid Oxide Fuel Cell Energy System Connected to Complex Power Grids Using Dynamic State Estimation and STATCOM

Authors: Tyrone Fernando; Tat Kei Chau; Herbert Ho-Ching Iu; Shenglong Yu;

Voltage Control Strategies for Solid Oxide Fuel Cell Energy System Connected to Complex Power Grids Using Dynamic State Estimation and STATCOM

Abstract

In this paper, a novel Dynamic State Estimation–current feedback with STATCOM control scheme is proposed for the mitigation of voltage fluctuation of Solid Oxide Fuel Cell (SOFC) power station connected to the complex power grids during electrical faults. The proposed control scheme is compared to two existing control strategies and shows its superiority in alleviating voltage flickers and deviations as well as protecting the internal membranes of the fuel cells. Since SOFC internal dynamic states are able to closely reflect the transience and dynamic behavior of SOFC, using them in controller designs can generate better regulations of the state-related internal voltage of SOFC than other methods. STATCOM is also utilized in this study to mitigate the voltage oscillations induced by unavoidable voltage fluctuations during electrical faults. The power system with proposed control strategy is proven to be stable through linear analysis. The acquisition of the useful internal dynamic states is realized using unscented Kalman filter algorithm based state estimator. The success of incorporating estimated states into the development of control strategies is conducive to the designs and implementations of new control schemes for power systems and also the applications of interdisciplinary control theories.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    27
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
27
Top 10%
Top 10%
Top 10%