
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Security Constrained Unit Commitment Using Line Outage Distribution Factors

handle: 11531/17882
Artículos en revistas Security-constrained unit commitment (SCUC) problem is one of the necessary tools for system operators to make operational planning and real-time operation. The internalization of transmission-network and security constraints (e.g. N-1 criterion) could lead to different decisions in the generation dispatch. However, the computational burden of this problem is challenging mainly due to its inherent large problem size. Therefore, this paper proposes an N-1 security constrained formulation based on the Line Outage Distribution Factors (LODF) instead of the one based on Injection Sensitivity Factors (ISF). This formulation is at the same time more compact than analogous formulations for contingency constraints; hence, it presents a lower computational burden. The computational efficiency of the proposed formulation is shown by solving the SCUC of the IEEE 118 bus system with LODF and ISF. Additionally, an iterative methodology for filtering the active N-1 congestion constraints is detailed, and its implementation for large-scale systems is described. The results show that the proposed filter reduces the computational time by approximately 70% in comparison to the complete formulation of N-1 constraints in SCUC. info:eu-repo/semantics/publishedVersion
004, Instituto de Investigación Tecnológica (IIT)
004, Instituto de Investigación Tecnológica (IIT)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).87 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
