Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Systems
Article . 2018 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Security Constrained Unit Commitment Using Line Outage Distribution Factors

Authors: Diego A. Tejada-Arango; Pedro Sanchez-Martin; Andres Ramos;

Security Constrained Unit Commitment Using Line Outage Distribution Factors

Abstract

Artículos en revistas Security-constrained unit commitment (SCUC) problem is one of the necessary tools for system operators to make operational planning and real-time operation. The internalization of transmission-network and security constraints (e.g. N-1 criterion) could lead to different decisions in the generation dispatch. However, the computational burden of this problem is challenging mainly due to its inherent large problem size. Therefore, this paper proposes an N-1 security constrained formulation based on the Line Outage Distribution Factors (LODF) instead of the one based on Injection Sensitivity Factors (ISF). This formulation is at the same time more compact than analogous formulations for contingency constraints; hence, it presents a lower computational burden. The computational efficiency of the proposed formulation is shown by solving the SCUC of the IEEE 118 bus system with LODF and ISF. Additionally, an iterative methodology for filtering the active N-1 congestion constraints is detailed, and its implementation for large-scale systems is described. The results show that the proposed filter reduces the computational time by approximately 70% in comparison to the complete formulation of N-1 constraints in SCUC. info:eu-repo/semantics/publishedVersion

Country
Spain
Keywords

004, Instituto de Investigación Tecnológica (IIT)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    87
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
87
Top 1%
Top 10%
Top 1%