Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Systems
Article . 2018 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Representation of Storage Operations in Network-Constrained Optimization Models for Medium- and Long-Term Operation

Authors: Diego A. Tejada-Arango; Sonja Wogrin; Efraim Centeno;

Representation of Storage Operations in Network-Constrained Optimization Models for Medium- and Long-Term Operation

Abstract

Artículos en revistas This paper proposes a model to carry out analysis of storage facilities operation including a transmission network. The model represents short-term storage operation in an approxi-mated way that reduces computational requirements, which makes it suitable for medium and long-term operational planning in power systems with a high level of renewable energy penetra-tion. In the proposed model, we cluster hourly data using the so-called system-states framework developed in previous work. Within this framework, non-consecutive similar time periods are grouped, while chronological information is represented by a tran-sition matrix among states. We extend the system-state framework from a single-bus system to a transmission network. We define and analyze two alternative sets of representative variables for clustering hours to obtain system states when the transmission network is considered. This extension of the system states framework allows us to evaluate the impact of transmission congestions in medium- and long-term planning models in a rea-sonable computation time. A case study shows that the proposed model is 235 times faster than an hourly approach, used as benchmark, whereas the overall system cost is approximated with less than 2% error. The overall charging/discharging trends are similar enough to those of the hourly model, being hydro storage better approximated than fast-ramping batteries. Besides, for the analyzed case study, it is shown how congestion in the transmission network in fact improves the accuracy of the proposed approach. info:eu-repo/semantics/publishedVersion

Country
Spain
Keywords

330, 004, Instituto de Investigación Tecnológica (IIT)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    22
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
22
Top 10%
Top 10%
Top 10%