
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Probabilistic Assessment of Spinning Reserve via Cross-Entropy Method Considering Renewable Sources and Transmission Restrictions

This work presents a new method to evaluate generation reserve margins in systems with renewable sources. In assessing the adequacy of generation reserve amounts, besides failures in generating units, their capacity intermittencies, unavailability, and capacity limits of the transmission system are duly considered. Risk indices are evaluated using quasi-sequential Monte Carlo simulation techniques. The cross-entropy method is used to treat rare events and also to identify critical equipment for operation in each scenario. The proposed method is applied to the original IEEE RTS system and to a modified configuration with insertion of wind power plants. A subsystem of the Brazilian interconnected network is also used to illustrate the practicality of the proposed method.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).39 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
