
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A Distributionally Robust Optimization Model for Unit Commitment Based on Kullback–Leibler Divergence

This paper proposes a new distance-based distributionally robust unit commitment (DB-DRUC) model via Kullback–Leibler (KL) divergence, considering volatile wind power generation. The objective function of the DB-DRUC model is to minimize the expected cost under the worst case wind distributions restricted in an ambiguity set. The ambiguity set is a family of distributions within a fixed distance from a nominal distribution. The distance between two distributions is measured by KL divergence. The DB-DRUC model is a “min-max-min” programming model; thus, it is intractable to solve. Applying reformulation methods and stochastic programming technologies, we reformulate this “min-max-min” DB-DRUC model into a one-level model, referred to as the reformulated DB-DRUC (RDB-DRUC) model. Using the generalized Benders decomposition, we then propose a two-level decomposition method and an iterative algorithm to address the RDB-DRUC model. The iterative algorithm for the RDB-DRUC model guarantees global convergence within finite iterations. Case studies are carried out to demonstrate the effectiveness, global optimality, and finite convergence of a proposed solution strategy.
- Tsinghua University China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).100 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
