Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Systems
Article . 2018 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Economic-Reliability Security-Constrained Optimal Dispatch for Microgrids

Authors: Vahid Sarfi; Hanif Livani;

An Economic-Reliability Security-Constrained Optimal Dispatch for Microgrids

Abstract

This paper presents a new security-constrained multiobjective optimal dispatch (SC-MOOD) framework for an economic and reliable operation of microgrids. The framework is developed based on a computationally effective multiobjective optimization technique, Pareto concavity elimination transformation (PaCcET). The new method considers grid steady-state and dynamic constraints while solving the optimal dispatch in both grid-connected and islanded modes. The constraints consist of power balance, voltage magnitude, line flows, power generation, frequency, and voltage transients. The proposed framework finds the most economic operating solutions to not only minimize the generation cost but also minimize the reliability cost. In this paper, the PaCcET is utilized to solve the SC-MOOD. The PaCcET uses an extraordinary transformation to first transfer all the points from a multiobjective space to a transformed objective space. It then solves a linear combination of transformed objectives using a single-objective optimizer to find all the nondominated points of the original multiobjective space. The performance of the new framework is verified using the simulation results in a microgrid with several distributed energy resources in both grid-connected and islanded modes. The results are then compared with two multiobjective optimization techniques, nondominated sorting genetic algorithm II and multiobjective particle swarm optimization, as two well-known benchmarks.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    46
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
46
Top 1%
Top 10%
Top 10%