
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Probabilistic Power Flow Analysis Using Multidimensional Holomorphic Embedding and Generalized Cumulants

This paper proposes a new analytical probabilistic power flow (PPF) approach for power systems with high penetration of distributed energy resources. The approach solves probability distributions of system variables about operating conditions. Unlike existing analytical PPF algorithms in literature, this new approach preserves nonlinearities of ac power flow equations and retain more accurate tail effects of the probability distributions. The approach first employs a multidimensional holomorphic embedding method to obtain an analytical nonlinear ac power flow solution for concerned outputs such as bus voltages and line flows. The embedded symbolic variables in the analytical solution are the inputs such as power injections. Then, the approach derives cumulants of the outputs by a generalized cumulant method, and recovers their distributions by Gram-Charlier expansions. This PPF approach can accept both parametric and nonparametric distributions of random inputs and their covariances. Case studies on the IEEE 30-bus system validate the effectiveness of the proposed approach.
- University of Tennessee at Knoxville United States
- Aalborg University Library (AUB) Denmark
- Tennessee State University United States
- Aalborg University Denmark
- Aalborg University Denmark
distributed energy resource, Generalized cumulant method, probabilistic power flow, nonlinearity, multi-dimensional holomorphic embedding method
distributed energy resource, Generalized cumulant method, probabilistic power flow, nonlinearity, multi-dimensional holomorphic embedding method
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).36 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
