

You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Data-Driven Power System Operation: Exploring the Balance Between Cost and Risk

Supervised machine learning has been successfully used in the past to infer a system's security boundary by training classifiers (also referred to as security rules) on a large number of simulated operating conditions. Although significant research has been carried out on using classifiers for the detection of critical operating points, using classifiers for the subsequent identification of suitable preventive/corrective control actions remains underdeveloped. This paper focuses on addressing the challenges that arise when utilizing security rules for control purposes. Illustrative examples and case studies are used to show how even very accurate security rules can lead to prohibitively high risk exposure when used to identify optimal control actions. Subsequently, the inherent tradeoff between operating cost and security risk is explored in detail. To optimally navigate this tradeoff, a novel approach is proposed that uses an ensemble learning method (AdaBoost) to infer a probabilistic description of a system's security boundary. Bias in predictions is compensated by the Platt Calibration method. Subsequently, a general-purpose framework for building probabilistic and disjunctive security rules of a system's secure operating domain is developed that can be embedded within classic operation formulations. Through case studies on the IEEE 39-bus system, it is showcased how security rules derived from supervised learning can be efficiently utilized to optimally operate the system under multiple uncertainties while respecting a user-defined balance between cost and risk. This is a fundamental step toward embedding data-driven models within classic optimisation approaches.
- Delft University of Technology Netherlands
- Imperial College London United Kingdom
Technology, DYNAMIC SECURITY ASSESSMENT, Engineering, dynamic stability, Power Systems Operation, Supervised machine learning, Dynamic Stability, Science & Technology, Energy, 000, AdaBoost, 0906 Electrical And Electronic Engineering, 006, Engineering, Electrical & Electronic, power systems operation, DECISION, 004, security rules, Electrical & Electronic, Supervised Machine Learning, Security Rules
Technology, DYNAMIC SECURITY ASSESSMENT, Engineering, dynamic stability, Power Systems Operation, Supervised machine learning, Dynamic Stability, Science & Technology, Energy, 000, AdaBoost, 0906 Electrical And Electronic Engineering, 006, Engineering, Electrical & Electronic, power systems operation, DECISION, 004, security rules, Electrical & Electronic, Supervised Machine Learning, Security Rules
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).39 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10% visibility views 21 download downloads 19 - 21views19downloads
Data source Views Downloads TU Delft Repository 21 19


