Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Systems
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Optimal Design for Distributed Secondary Voltage Control in Islanded Microgrids: Communication Topology and Controller

Authors: Guannan Lou; Wei Gu; Jianhui Wang; Wanxing Sheng; Lijing Sun;

Optimal Design for Distributed Secondary Voltage Control in Islanded Microgrids: Communication Topology and Controller

Abstract

This paper proposes an optimal design algorithm for distributed secondary voltage control in islanded microgrids (MGs), including communication topology and controller gains. First, upon the consensus-based secondary voltage control, the sufficient condition for network connectivity of communication topology is revealed by the reachability matrix. A multi-objective optimization criterion is first proposed for the network design, taking the convergence performance, network-relevant time delays, and communication costs into consideration. After obtaining the Pareto frontier of this multi-objective model, an optimal network is selected to meet the practical requirements. Based on static output feedback, a small-signal dynamic model of an MG installed with a secondary voltage controller is established, where the distributed secondary voltage controller can be converted into an equivalent decentralized controller. Thereby, a linear quadratic regulator is formulated for the near-optimal design of controller parameters. Our approach customizes the optimal design framework of the topology and controller, which have been largely ignored in the existing literatures. Therefore, it promises to improve the performance of distributed secondary control. The effectiveness of the proposed methodology is verified by a simulation study.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    55
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
55
Top 1%
Top 10%
Top 1%