Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Systems
Article . 2019 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
PolyPublie
Article . 2019
Data sources: PolyPublie
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Standstill Frequency Response Test and Validation of a Large Hydrogenerator

Authors: Abdelghafour Belqorchi; Ulas Karaagac; Jean Mahseredjian; Innocent Kamwa;

Standstill Frequency Response Test and Validation of a Large Hydrogenerator

Abstract

This paper intends to contribute to the revision process of the IEEE Standard 115 by demonstrating the applicability of the standstill frequency response (SSFR) test on large salient pole hydrogenerators. The presented SSFR tests are carried out on a 55.6-MVA salient pole machine with laminated rotor, non-continuous damper windings, and a nonintegral slot number. The IEEE-115 SSFR test procedure is applied with special care to rotor positioning as well as accurate data acquisition in the low-frequency range. The maximum likelihood estimation method is utilized for machine parameter identification from the SSFR tests. Obtained parameters are compared with design values in addition to the ones obtained using traditional “sudden no-load three-phase short-circuit,” Dalton–Cameron and “open stator d-axis transient time constant” methods. The accuracy of parameters is also confirmed by comparing the measured three-phase short-circuit current waveforms with the ones obtained by simulating the SSFR-based machine models in an electromagnetic transient -type software. Unlike previous SSFR test cases on large salient pole hydrogenerators, accurate results are obtained.

Countries
China (People's Republic of), Hong Kong, China (People's Republic of), Canada, Hong Kong
Keywords

Hydrogenerator, Frequency response, Parameter determination, Synchronous machine, Operational parameters, Equivalent circuits, Salient pole

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    17
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
17
Top 10%
Top 10%
Top 10%