Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Systems
Article . 2020 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Improvement of Power System Transient Stability in the Event of Multi-Phase Faults and Circuit Breaker Failures

Authors: Sylwester Robak; Jan Machowski; Mateusz Skwarski; Marcin Januszewski;

Improvement of Power System Transient Stability in the Event of Multi-Phase Faults and Circuit Breaker Failures

Abstract

This paper proposes a new event-based logic of the breaker failure protection to improve power system transient stability by shortening the total clearing time of extreme contingencies involving circuit breaker failures. Stability improvement is achieved by using dual-timer protection with shorter safety margin for multi-phase faults close to the power plant and longer safety margin for remote multi-phase faults and single-phase faults. The use of the output signal obtained for a short safety margin depends on how the substation is configured. In the breaker-and-a-half configuration, this output signal is used to speed up the opening of all adjacent circuit breakers. In substations with the dual (or triple) busbar configuration the output signal obtained with a short safety margin is used to speed up the busbar splitting. A case study was performed for a real large-scale power system. Simulation results confirmed the advantages of the proposed logic. Breaker failure protection with the proposed logic has been implemented in a substation of a large power plant.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Top 10%
Top 10%