
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Analytical Reformulation for Stochastic Unit Commitment Considering Wind Power Uncertainty With Gaussian Mixture Model

To capture the stochastic characteristics of renewable energy generation output, chance-constrained unit commitment (CCUC) model is widely used. Conventionally, analytical reformulation for CCUC is usually based on simplified probability assumption or neglecting some operational constraints, otherwise scenario-based methods are used to approximate probability with heavy computational burden. In this paper, Gaussian mixture model (GMM) is employed to characterize the correlation between wind farms and probability distribution of their forecast errors. In our model, chance constraints including reserve sufficiency and branch power flow bounds are ensured to be satisfied with predetermined probability. To solve this CCUC problem, we propose a Newton method based procedure to acquire the quantiles and transform chance constraints into deterministic constraints. Therefore, the CCUC model is efficiently solved as a mixed-integer quadratic programming problem. Numerical tests are performed on several systems to illustrate efficiency and scalability of the proposed method.
- Tsinghua University China (People's Republic of)
- State Grid Corporation of China (China) China (People's Republic of)
- State Grid Corporation of China (China) China (People's Republic of)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).66 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
