
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Convex Optimization of Integrated Power-Gas Energy Flow Model With Applications to Probabilistic Energy Flow

Energy flow calculation is a fundamental problem of the integrated power and gas system (IPGS) operation and planning. However, the nonlinear gas flow model introduces major challenges to the energy flow calculation. In this paper, we propose a tractably convex optimization model to solve the energy flow problem in IPGSs. It is demonstrated that the proposed optimization model has the same optimal solution as the original nonlinear steady energy flow model. Also, piecewise linearization is adopted to tightly linearize the nonlinear objective function of the model, which transforms the formulated convex optimization into a linear program one. Thus, the computation complexity of the proposed energy flow model is significantly reduced as compared with the existing methods. In addition, the proposed model can be extended to probabilistic energy flow estimation. Extensive case studies are conducted to validate the effectiveness of the proposed energy flow model using three IPGSs.
- Lawrence Berkeley National Laboratory United States
- Illinois Institute of Technology United States
- Xi’an Jiaotong-Liverpool University China (People's Republic of)
- Xi'an Jiaotong University China (People's Republic of)
- Lawrence Berkeley National Laboratory United States
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).46 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 1% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 1%
