
You have already added 0 works in your ORCID record related to the merged Research product.
You have already added 0 works in your ORCID record related to the merged Research product.
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Efficient Quantification of the Impact of Demand and Weather Uncertainty in Power System Models

handle: 10044/1/83272
This paper introduces a new approach to quantify the impact of forward propagated demand and weather uncertainty on power system planning and operation models. Recent studies indicate that such sampling uncertainty, originating from demand and weather time series inputs, should not be ignored. However, established uncertainty quantification approaches fail in this context due to the data and computing resources required for standard Monte Carlo analysis with disjoint samples. The method introduced here uses an m out of n bootstrap with shorter time series than the original, enhancing computational efficiency and avoiding the need for any additional data. It both quantifies output uncertainty and determines the sample length required for desired confidence levels. Simulations and validation exercises are performed on two capacity expansion planning models and one unit commitment and economic dispatch model. A diagnostic for the validity of estimated uncertainty bounds is discussed. The models, data and code are made available.
8 pages. For supplementary material, see the version on IEEExplore
FOS: Computer and information sciences, 0906 Electrical and Electronic Engineering, Energy, 330, Applications (stat.AP), stat.AP, Statistics - Applications, 004
FOS: Computer and information sciences, 0906 Electrical and Electronic Engineering, Energy, 330, Applications (stat.AP), stat.AP, Statistics - Applications, 004
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).5 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Average impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
