
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Resilience-Oriented DG Siting and Sizing Considering Stochastic Scenario Reduction

In this paper, a fuel-based distributed generator (DG) allocation strategy is proposed to enhance the distribution system resilience against extreme weather. The long-term planning problem is formulated as a two-stage stochastic mixed-integer programming (SMIP). The first stage is to make decisions of DG siting and sizing under the given budget constraint. In the second stage, a post-extreme-event-restoration (PEER) is employed to minimize the operating cost in an uncertain fault scenario. In particular, this study proposes a method to select the most representative scenarios for the SMIP. First, a Monte Carlo Simulation (MCS) is introduced to generate sufficient scenarios considering random fault locations and load profiles. Then, the number of scenarios is reduced by the K-means clustering algorithm. The advantage of scenario reduction is to make a trade-off between accuracy and computational efficiency. Finally, the SMIP is solved by the progressive hedging algorithm. The case studies of the IEEE 33-bus and 123-bus test systems demonstrate the effectiveness of the proposed algorithm in reducing the expected energy not served (EENS), which is a critical criterion of resilience.
- University of Tennessee at Knoxville United States
- Tennessee State University United States
- Tennessee State University United States
- Oak Ridge National Laboratory United States
- 4science Italy
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).22 popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.Top 10% influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).Top 10% impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.Top 10%
