Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao IEEE Transactions on...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
IEEE Transactions on Power Systems
Article . 2022 . Peer-reviewed
License: IEEE Copyright
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sparse Tracking State Estimation for Low-Observable Power Distribution Systems Using D-PMUs

Authors: Alireza Akrami; Salman Asif; Hamed Mohsenian-Rad;

Sparse Tracking State Estimation for Low-Observable Power Distribution Systems Using D-PMUs

Abstract

A new state estimation method is proposed for power distribution networks that suffer from low-observability. The proposed distribution system state estimation (DSSE) method leverages the high reporting rate of only a small number of distribution-level phasor measurement units (D-PMUs), a.k.a., micro-PMUs, to unmask and characterize sparsity among the state variables. The DSSE problem is formulated over differential synchrophasors as an adaptive group sparse recovery problem to track the changes that are made in the states of the system due to the events that are captured in D-PMU measurements. The formulated DSSE is further augmented to use adequate side information on the support of the vector of unknowns that is obtained from the outcome of an event-zone identification analysis prior to solving the DSSE problem. The sufficient conditions for the uniqueness of the obtained sparse recovery solution are derived with respect to the available side information. Moreover, a calibration mechanism is developed to address drifting in the tracking state estimation to enhance robustness.

Country
United States
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green
bronze