Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ IEEE Transactions on...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Transactions on Power Systems
Article . 2022 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
IEEE Transactions on Power Systems
Article
License: CC BY
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
RUIdeRA
Article . 2021
Data sources: RUIdeRA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
RUIdeRA
Article . 2022
Data sources: RUIdeRA
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Aaltodoc Publication Archive
Article . 2022 . Peer-reviewed
versions View all 10 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

An Enhanced MILP Model for Multistage Reliability-Constrained Distribution Network Expansion Planning

Authors: Abbaspour, Ali; Fotuhi-Firuzabad, Mahmud; Munoz-Delgado, Gregorio; Contreras, Javier; Lehtonen, Matti; Arroyo; Jose, M.; +1 Authors

An Enhanced MILP Model for Multistage Reliability-Constrained Distribution Network Expansion Planning

Abstract

Reliability is an essential factor in distribution networkt expansion planning. However, standard distribution reliability assessment techniques rely on quantifying the impact of a pre-specified set of events on service continuity through the simulation of component outages, one at a time. Due to such a simulation-based nature, the incorporation of reliability into distribution network expansion planning has customarily required the application of heuristic and metaheuristic approaches. Recently, alternative mixed-integer linear programming (MILP) models have been proposed for distribution network expansion planning considering reliability. Nonetheless, such models suffer from either low computational efficiency or over-simplification. To overcome these shortcomings, this paper proposes an enhanced MILP model for multistage reliability-constrained distribution network expansion planning. Leveraging an efficient, yet accurate reliability evaluation model, proposing a customized technique for effectively imposing radial operation, as well as utilizing pragmatic measures to model reliability-related costs are the salient features of this work. In this respect, practical reliability-related costs are considered based on reliability incentive schemes and the revenue lost due to undelivered energy during customer outages. The proposed planning approach is tested on four networks with 24, 54, 86, and 138 nodes to illustrate its efficiency and applicability. La confiabilidad es un factor esencial en la planificación de la expansión de la red de distribución. Sin embargo, las técnicas estándar de evaluación de la confiabilidad de la distribución se basan en la cuantificación del impacto de un conjunto de eventos preespecificados en la continuidad del servicio a través de la simulación de cortes de componentes, uno a la vez. Debido a esta naturaleza basada en la simulación, la incorporación de la confiabilidad en la planificación de la expansión de la red de distribución ha requerido habitualmente la aplicación de enfoques heurísticos y metaheurísticos. Recientemente, se han propuesto modelos alternativos de programación lineal entera mixta (MILP) para la planificación de la expansión de la red de distribución teniendo en cuenta la confiabilidad. No obstante, tales modelos sufren de una baja eficiencia computacional o de una simplificación excesiva. Para superar estas deficiencias, Este documento propone un modelo MILP mejorado para la planificación de la expansión de la red de distribución con restricciones de confiabilidad en varias etapas. Aprovechar un modelo de evaluación de confiabilidad eficiente pero preciso, proponer una técnica personalizada para imponer de manera efectiva la operación radial, así como utilizar medidas pragmáticas para modelar los costos relacionados con la confiabilidad, son las características más destacadas de este trabajo. En este sentido, los costos prácticos relacionados con la confiabilidad se consideran en función de los esquemas de incentivos de confiabilidad y la pérdida de ingresos debido a la energía no entregada durante los apagones de los clientes. El enfoque de planificación propuesto se prueba en cuatro redes con 24, 54, 86 y 138 nodos para ilustrar su eficiencia y aplicabilidad. Las características más destacadas de este trabajo son proponer una técnica personalizada para imponer con eficacia la operación radial, así como utilizar medidas pragmáticas para modelar los costos relacionados con la confiabilidad. En este sentido, los costos prácticos relacionados con la confiabilidad se consideran en función de los esquemas de incentivos de confiabilidad y la pérdida de ingresos debido a la energía no entregada durante los apagones de los clientes. El enfoque de planificación propuesto se prueba en cuatro redes con 24, 54, 86 y 138 nodos para ilustrar su eficiencia y aplicabilidad. Las características más destacadas de este trabajo son proponer una técnica personalizada para imponer con eficacia la operación radial, así como utilizar medidas pragmáticas para modelar los costos relacionados con la confiabilidad. En este sentido, los costos prácticos relacionados con la confiabilidad se consideran en función de los esquemas de incentivos de confiabilidad y la pérdida de ingresos debido a la energía no entregada durante los apagones de los clientes. El enfoque de planificación propuesto se prueba en cuatro redes con 24, 54, 86 y 138 nodos para ilustrar su eficiencia y aplicabilidad.

Countries
Finland, Finland, Spain
Keywords

reliability, ta213, Substations, Indexes, Power system reliability, Multistage, Reliability, Distribution network expansion planning, Planning, Mixedinteger linear programming, Distribution networks, Investment, mixed-integer linear programming, multistage

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    38
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
38
Top 10%
Top 10%
Top 1%
Green
hybrid